Congruence (geometry)

Congruence (geometry)

Two figures or objects are congruent if they have the same shape and size, or if one has the same shape and size as the mirror image of the other.

An example of congruence. The two triangles on the left are congruent, while the third is similar to them. The last triangle is neither similar nor congruent to any of the others. Congruence permits alteration of some properties, such as location and orientation, but leaves others unchanged, like distance and angles. The unchanged properties are called invariants.More formally, two sets of points are called congruent if, and only if, one can be transformed into the other by an isometry, i.e., a combination of rigid motions, namely a translation, a rotation, and a reflection. This means that either object can be repositioned and reflected (but not resized) so as to coincide precisely with the other object. So two distinct plane figures on a piece of paper are congruent if we can cut them out and then match them up completely. Turning the paper over is permitted.

This diagram illustrates the geometric principle of angle-angle-side triangle congruence: Given triangle ABC and triangle A'B'C', triangle ABC is congruent with triangle A'B'C' if and only if angle CAB is congruent with C'A'B' and angle BCA is congruent with B'C'A' and BC is congruent with B'C'

In elementary geometry the word congruent is often used as follows. The word equal is often used in place of congruent for these objects.

  • Two line segments are congruent if they have the same length.
  • Two angles are congruent if they have the same measure.
  • Two circles are congruent if they have the same diameter.

Video: What are Congruent Figures?

In this sense, two plane figures are congruent implies that their corresponding characteristics are "congruent" or "equal" including not just their corresponding sides and angles, but also their corresponding diagonals, perimeters and areas.

The related concept of similarity applies if the objects have the same shape but do not necessarily have the same size. (Most definitions consider congruence to be a form of similarity, although a minority require that the objects have different sizes in order to qualify as similar.)

Determining congruence of polygons

The orange and green quadrilaterals are congruent; the blue is not congruent to them. All three have the same perimeter and area. (The ordering of the sides of the blue quadrilateral is "mixed" which results in two of the interior angles and one of the diagonals not being congruent.)

For two polygons to be congruent, they must have an equal number of sides (and hence an equal number—the same number—of vertices). Two polygons with n sides are congruent if and only if they each have numerically identical sequences (even if clockwise for one polygon and counterclockwise for the other) side-angle-side-angle-... for n sides and n angles.

Video: Congruent Polygons

Congruence of polygons can be established graphically as follows:

  • First, match and label the corresponding vertices of the two figures.
  • Second, draw a vector from one of the vertices of the one of the figures to the corresponding vertex of the other figure. Translate the first figure by this vector so that these two vertices match.
  • Third, rotate the translated figure about the matched ...................

...........................

 

‹ Transformation (geometry)           up           Congruence (geometry) video ›

 

NOTE: You need to be subscribed to either a monthly or annual plan to view the full set of Math Lessons (Study Guide)
Please visit  to register for a plan. 

Have fun learning!